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ABSTRACT

In diffusion tensor MRI, a number of diffusion-weighted im-
ages with different diffusion-weighting gradient directions
are acquired during scanning. The tensor calculation assumes
that each voxel corresponds to the same anatomical location
in all the measurements. Movements and distortions violate
this assumption and typically the images are realigned before
model fitting. The traditional method uses a non-diffusion-
weighted image as the reference for registration, but the
differences between diffusion-weighted images and the non-
diffusion weighted reference image can cause mismatching
to occur during registration, even using metrics like the mu-
tual information (MI) that accounts for non-linear contrast
differences. We propose alternative model-based methods
to improve motion correction and avoid the errors that the
traditional method introduces. We demonstrate quantitative
improvements using the new approaches on a full data with
slight, but typical, movement during acquisition.

Index Terms— Diffusion, MRI, motion correction,
model-based, registration

1. INTRODUCTION

Diffusion MRI (Magnetic Resonance Imaging) [1] has in-
creased in popularity recently since the introduction of diffu-
sion tensor (DT) MRI [2]. Diffusion MRI measures the local
water diffusion properties in the material being imaged. In
fibrous material, diffusion in directions perpendicular to the
fibre is hindered by cell walls, so water diffuses more eas-
ily along axon bundles. Thus, diffusion MRI can be used to
estimate fibre direction when combined with a suitable recon-
struction method, such as DT-MRI [2].
Brain white matter fibres connect different regions of

grey matter. By following fibre directions from point to point
through the image, we can recover the trajectory of white
matter fibres, which reveals the connectivity between the
different regions of the brain.
Modern DT-MRI protocols acquire between 6 and about

100 diffusion-weighted (DW) images with different gradient
directions. During such a long time, small head movements
are not easy to avoid. In addition, DW-MRI uses a spin-echo

sequence with EPI readout, which induces further displace-
ment and distortion in the images [3, 4]. However, the tensor
calculation assumes that each voxel corresponds to the same
anatomical location in all the measurements, so the images
typically require prealignment.
The traditional method for DW-MRI registration uses

a non-diffusion-weighted (b = 0) MR image as the refer-
ence for registration, since it does not suffer from eddy-
current-induced distortion and has higher SNR than the DW
images [5]. The scheme registers each DW image to the
reference by a 3D rigid or affine transformation computed
by maximizing a similarity measure such as cross-correlation
or mutual information. The problem is that the differences
between DW images and reference image cause mismatch-
ing. The differences can be highly localized confounding
even information theoretic similarity measures like mutual
information. To address these problems, this work proposes
an alternative model-based registration technique to improve
motion correction and correct the errors that the traditional
method introduces. The method uses the DT model to predict
separate reference images for each diffusion gradient.

2. BACKGROUND

2.1. Diffusion-tensor MRI

DT-MRI [2] fits the apparent diffusion tensor in each voxel to
a number of measurements A(qi),i = 1, ..., N , with different
diffusion weighting. The model is

A(q) = exp(−tqT Dq), (1)

where D is the diffusion tensor, t is the diffusion time and q

is a vector denoting the strength and direction of the diffusion
weighting.
To fit the six free parameters of D requires a minimum

of six measurements A(q) with independent q. To obtain
less noisy DT-MR images, around 50 measurements are typi-
cally acquired. Most often, the linear least-squares algorithm
is used to fit the tensor D to the log of the measurement via
Eq. (1). Non-linear least squares fitting is slower but more
appropriate for the noise in DW images. Also, various ro-
bust fitting procedures exist to avoid outliers from physiolog-
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ical noise effects like cardiac pulsation. One example is the
RESTORE algorithm [6], which we use later. The method
detects outliers by thresholding the residual from the linear
fit and then iteratively reweights measurements during non-
linear fitting to reduce the influence of outliers.
Two useful scalar indices derived from D. Two of the

most commonly used are the trace, Tr(D), and the frac-
tional anisotropy (FA). Tr(D) is proportional to the mean
squared displacement, and indicates the mobility of the water
molecules. FA is the normalised standard deviation of the
eigenvalues. High FA appear in areas in which the local
fibres have consistent orientation.

2.2. DWI registration

The traditional method to align all the DW acquisitions in a
DT-MRI protocol is to match each DWI to an unweighted
(b = 0) image. A recent implementation of this idea is FM-
RIB’s Diffusion Toolbox, eddycorrect [7] which combines
this strategy with the popular FLIRT tool [8]. Eddycorrect
uses only shear to correct for eddy current distortions only.
The dataset we use here has significant movement corrup-
tion, which is a rotation of the head. We adapt eddycorrect to
use a full affine transformation for comparison with the new
method we propose; we refer to this method henceforward as
’the traditional method’.
Two techniques in the literature are more similar to ours.

Andersson and Skare [3] formulate a large optimization to
correct misalignment and fit the DT model at the same time.
However, the method is very computationally expensive.
Moreever, the algorithm does not exclude outliers, which
can cause the method often to converge on poor solutions.
Buonaccorsi et al.[9] present a locally-controlled 3D transla-
tional registration process driven by tracer kinetic model of
blood volume. Their technique involves fitting a paramet-
ric kinetic model to a time series of measurements in each
voxel. They use a five-step iterative scheme in the registration
process: 1. Fit the model to the original measurements; 2.
Synthesize reference signal maps from the fitted model; 3.
Register translation only to match each original time point
volume to its corresponding reference volume; 4. Re-fit the
model; 5. Repeat steps 2 to 4 until a minimum is found in the
model fit errors. This method copes well with features that
appear and disappear between images, but, as with Andersson
and Skare [3], does not account for outliers.

3. METHOD

Here, we adopt a similar approach to Buonaccorsi but adapted
for DT-MRI. The basic framework contains three steps: 1.
Fit the model to the measurements; 2. Synthesize reference
data for each measurement from the fitted model; 3. Regis-
ter each measurement volume to the corresponding synthetic
reference. This section outlines two versions of the method.

3.1. Fit the Model to All the Measurements - FMAM

The most direct model-based registration is a direct adapta-
tion of Buonaccorsi’s method [9] to DT-MRI. We call this
the FMAM method. Since the method does not attempt to
reject outliers, the model fitting procedure is influenced by
measurements from misaligned images. Step 1: Fit the ten-
sor to all scanner output measurement images, as described in
§2.1. Step 2: Making synthetic images. From the fitted ten-
sorD from step 1, we generate target image volumes for each
measurement by synthesizing the measurement from Eq. (1).
Step 3: Registration of the scanner output image data set. We
register every DWI to the corresponding synthetic target im-
age, with the same q, using FLIRT [8] to perform 3D affine
registration by optimizing mutual information.
Compared with the traditional method, FMAM has the

advantage that it uses different reference images to register
DW images with different gradient directions. The registra-
tion thus avoids mismatches that small local contrast differ-
ences can cause.

3.2. Fit the Model using RESTORE - FMR

Step 1 of FMAM fits the diffusion tensor D to the whole set
of DW measurements. This means that all measurements, in-
cluding any that are poorly aligned, contribute to the fitted
D. The corrupted measurements therefore affect the refer-
ence image made fromD in step 2.
We may expect better reference images, if we fit the ten-

sor only to the uncorrupted subset of measurements. This
section’s alternative procedure (FMR) replaces step 1 above
by fitting using the RESTORE method [6], which uses outlier
rejection to ignore corrupted measurements. The RESTORE
method was designed to improve DT fitting in the presence
of motion artifacts caused, for example, by cardiac pulsation.
Here, we use the technique slightly differently to eliminate
misaligned measurements during reference construction.

3.3. Gradients Correction

The steps outlined the previous sections, including the tradi-
tional method mentioned in §2.2, do not account for the effect
of rotation on the DWIs. Rotational head motion causes ad-
ditional contrast changes because of the change in diffusion
gradient direction with respect to the head. Figure 1 illustrates
the effect. Having computed a correcting affine transforma-
tion for each acquisition, we update the effective diffusion-
weighting gradient direction to account for the head rotation
at imaging time. From the affine transformation Ti obtained
from the registration, we use the standard polar decomposi-
tion [10] to extract the rotation Ri for each image:

Ri = (TiT
T
i )−1/2Ti, (2)

and use it to correct each gradient direction qi → Ri(qi).
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Fig. 1. Illustration of how rotation affects the effective gra-
dient direction. The arrows indicate gradient directions. (a)
Head without rotation. Suppose the mouth is a fibre. The sig-
nal is high because the gradient is perpendicular to the fibre.
(b) Head with rotation. The signal is lower in the mouth fi-
bre. (c) The unrotated head (after registration). The effective
gradient direction for the corrected image is rotated.

We note here that we might iterate the whole procedure
outlined at the start of this section, as in [9]. However, we
find little improvement in practice after the first iteration so
do not include that step here.

4. EXPERIMENTS AND RESULTS

We run the traditional method, and FMAM and FMR meth-
ods on a full dataset acquired on a Philips 3T Achieva scanner
with small motion corruption, which has 64 measurements,
with 128×128×32 voxels for each measurement. The dataset
has 60 diffusion weighted images with b = 1200s/mm2. Af-
ter aligning the data set, we also update diffusion gradients
for the registered datasets from traditional, and FMAM and
FMR methods, according to the transformations used in reg-
istrations.
As the original data set contains only small motion cor-

ruption, it is hard to tell the differences and improvement by
visualising FA maps. Thus to assess the performance of dif-
ferent methods, we evaluate the variance of statistics derived
from the diffusion tensor fitted to subsets of the 60 measure-
ments in each voxel. The better aligned the 60measurements,
the more consistent statistics like FA, Tr(D) and principle dif-
fusion direction should be among different subsets of the 60
measurements. Specifically, we divide the 60 measurements
into 4 groups of 15. We use the method in [11] to choose
the four subsets so that each contains 15 measurements from
well separated and evenly distributed directions. To evaluate
the variance of the four principal directions e1, . . . , e4 in each
voxel, we use the largest eigenvalue λ1 of the dyadic tensor∑

4

i=1
eie

T
i . When all four |ei| are aligned, λ1 = 1. As they

become less aligned, λ1 decreases to a minimum of zero when
they are maximally separated.
Table 1 shows the average of λ1 over four image regions

after alignment using the various algorithms. One of the

regions is the whole of the skull-stripped brain. The other
regions are shown in Figure 2. The first four rows of Ta-
ble 1 compare three methods, traditional, FMAM and FMR,
with no alignment. Those rows show mean λ1 without the
gradient-direction correction step in §3.3. The remaining
rows compare mean λ1 after gradient-direction correction.

(a) Region cc01 (b) Region cc02

(c) Region mix

Fig. 2. Three specified regions (coloured in red) for compar-
ing measurement’s alignment.

Brain cc01 cc02 mix
Original data 0.8180 0.9961 0.9835 0.9065
Traditional 0.9206 0.9989 0.9959 0.9676
FMAM 0.9358 0.9989 0.9989 0.9811
FMR 0.9335 0.9989 0.9988 0.9804

Correction with Gradient Updated
Traditional 0.9280 0.9988 0.9961 0.9623
FMAM 0.9364 0.9988 0.9987 0.9819
FMR 0.9350 0.9987 0.9987 0.9814

Table 1. Mean of λ1’s of dyadic tensors in four region (the
larger the better and 1 is perfect)

All three methods, with and without gradient updating,
improve the alignment of the four sub-tensors. The FMAM
and FMR methods give convincingly better performance than
the traditional method. The extra step of correcting the diffu-
sion gradients generally improves alignments slightly further.
The rotation component from Eq. (2) includes contribu-

tion from the shear caused by eddy-current distortion, which
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Brain cc01 cc02 mix
Original data 0.2825 0.7067 0.6955 0.5248
Traditional 0.2164 0.6812 0.6201 0.4134
FMAM 0.2264 0.6939 0.6568 0.4715
FMR 0.2250 0.6912 0.6552 0.4740

Correction with Gradient Updated
Traditional 0.2172 0.6803 0.6238 0.4089
FMAM 0.2266 0.6947 0.6574 0.4713
FMR 0.2258 0.6951 0.6597 0.4714

Table 2. Mean of FAs

does not affect the gradient orientation. We may see further
improvement if we can separate the rotational corruption from
motion and the eddy-current distortion and use only the for-
mer to correct gradient orientations. We note that in this ex-
ample, FMR offers no advantage over FMAM. However, it in-
troduces no significant disadvantage and, in cases with larger
distortions or motion problems, it is often more robust solve
advocate its use.
Table 2 shows the mean FA over the same regions used in

Table 1. We observe an increase in FA using the new align-
ment procedures, which also suggests improved alignment re-
ducing small patial-volume effects that artificially reduce FA.

5. DISCUSSION

For fitting the diffusion tensor, voxels in different diffusion-
weighted images must correspond to the same anatomical lo-
cation. Thus, all the measurement images need to be well
aligned. The long scan time introduces patient movement.
Moreover, EPI induces displacement and distortion in DW-
MRI. The traditional correction schemes use the same refer-
ence image to register all the other diffusion-weighted images
with different gradient directions. Although they correct the
effects of both eddy-current-induced distortion and subject
motion, local contrast differences still cause misregistration.
Here, we have proposed new model-based methods and

tested them on a full-size diffusion MRI data set. The new
methods are based on a three-step procedure to register DWI
data sets. They use different reference images for DWIs with
different gradient directions for registration, so the registra-
tions take into account the contrast differences of measure-
ments. FMAM fits the diffusion tensor D to the whole set
of diffusion weighted measurements, and FMR fits the tensor
only to a selected subset of measurement images.
Quantitative results show the FMAM and FMR provide

significant improvement from the traditional alignment pro-
cedure, and orientation correction for the diffusion gradients
upgrades the registration performance for all methods. Com-
putation time for a typical dataset on a modern desktop is
about 120mins, which is about the same as eddycorrect.
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